S.No.: 20

No. of Printed Pages: 06

Following Paper ID and Ro	ll No. t	o be f	illed in	ı your	Ansv	ver B	ook.
PAPER ID: 23220	Roll No.						

B. Tech. Examination 2021-22

(Even Semester)

COMPILER DESIGN

Time: Three Hours] [Maximum Marks: 60

Note: - Attempt all questions.

SECTION-A

- 1. Attempt all parts of the following: $8 \times 1 = 8$
 - (a) What is role of code optimization in compiler?
 - (b) Define the term bootstrapping.
 - (c) Mention the rule of eliminate left recursion.
 - (d) Short notes on evaluation order of semantics action in SDD.
 - (e) Define the forms of intermediate code.
 - (f) Define the role of lexical analyzer in compiler.

[P. T. O.

- (g) DAG for expression (a * b) + (a * b) using mknode and mkleaf function.
- (h) Write down the short notes on sub common expression elimination.

SECTION-B

- 2. Attempt any two parts of the following: $2\times6=12$
 - (a) Construct the syntax tree using syntax directed definition for the expression x * y 5 + z with the help of grammar G as follows:

G:

$$E \rightarrow E + T/E - T/E * T/T$$

 $T \rightarrow id/digit$

(b) Check whether the given grammar is CRL (1) and LALR (1) or not? Grammar G as follows:

G: $s \rightarrow Aa$ $s \rightarrow bAc$ $s \rightarrow Bc$ $s \rightarrow bBa$ $A \rightarrow d$ $B \rightarrow d$

(c) Parse the given input string id + id * id using LL (1) parser for the given grammar G as:

$$G:$$
 $E \rightarrow E + T/T$
 $T \rightarrow T * F/F$
 $F \rightarrow id$

(d) Describe the role of optimization techniques.

SECTION-C

Note: - Attempt all questions from this section.

$$10 \times 4 = 40$$

- 3. Attempt any two parts of the following:
 - (a) Generate the intermediate code for Boolean expression as follows:

$$A > B$$
 AND $B < C$ OR $G < H$

with proper SDD or useful production rule of general grammar.

(b) Write down the SDD for while-do statement and generate three address code for given expression:

```
while (A < C \text{ and } B > D) do

{

if A = 1

then A = A + 1

Else B = B + 1
}
```

(c) Write the quadruples, triple, and indirect triple intermediate code for the following expression:

$$(x + y) * (y + z) + (x + y + z)$$

- 4. Attempt any two parts of the following:
 - (a) Calculate First and Follow function for the given grammar G as:

G:

$$A \rightarrow AcB/cC/C$$

 $B \rightarrow bB/d$
 $C \rightarrow caB/BbB/B$

(b) Construct operator precedence parser and then parse the following string (a, (a, a)). Grammar G as:

$$G:$$

$$S \rightarrow (L)/a$$

$$L \rightarrow L, S/S$$

(c) Check whether the given grammar is CLR (1) or not? Grammar G as:

$$S \rightarrow CC, C \rightarrow a C/d$$

- 5. Attempt any two parts of the following:
 - (a) Write down the differences between the synthesized and inherited attribute with suitable examples.
 - (b) Construct syntax tree for statement

$$x * y - 5 + z$$

given grammar G using mk leaf (), mknode () functions:

G:

$$E \rightarrow E + T/E - T/E * T$$

 $T \rightarrow num/id$

(c) Explain the role of optimization in compiler and define all types of loop optimization techniques used for basic blocks.

- 6. Attempt any two parts of the following:
 - (a) Explain the phases of compiler and implement all the phases for given statement:

$$x := a + b - c * 9$$

(b) Generate code for the following statement using simple code generation algorithms:

$$x = a + \frac{b + c}{d * e} / (f * g)$$

- (c) Write short notes on the following:
 - (i) Optimization of basic blocks
 - (ii) Loop unrolling and loop fusion

###