S.No.: 549
BCS 2403

No. of Printed Pages: 04

Following Paper ID and Rol	ll No. to	be fill	led in y	our An	swer Bo	ook.
PAPER ID: 23209	Roll No.					

B. Tech. Examination 2021-22

(Even Semester)

DATA STRUCTURE USING 'C'

Time: Three Hours] [Maximum Marks: 60

Note: - Attempt all questions.

SECTION-A

- 1. Attempt all parts of the following: $8 \times 1 = 8$
 - (a) How can you represent a sparse matrix in memory?
 - (b) Give some applications of stack.
 - (c) Explain tail recursion.
 - (d) Define full binary tree.
 - (e) What is spanning tree?

- (f) Write overflow conditions for circular queue.
- (g) Define data structure and its types.
- (h) Define hashing.

SECTION - B

- 2. Attempt any two parts of the following: $2 \times 6 = 12$
 - (a) Explain various data structure operations with example.
 - (b) Write an algorithm for the conversion of infix to postfix expression using suitable example.
 - (c) What is tower of Hanoi problem? Draw recursion tree for three disks.
 - (d) Write an algorithm for the insertion of an element in the linked representation of queue.

SECTION-C

- **Note :-** Attempt all questions. Attempt any two parts from each questions. $5 \times 8 = 40$
- 3. (a) Write C function for push and pop operations of stack.

- (b) Write an algorithm for the traversal of singly linked list.
- (c) Write a program in C for the insertion of an element in the beginning of the array.
- 4. (a) What are the disadvantages of simple queue over circular queue? Write an algorithm for the deletion of an element in the circular queue.
 - (b) Write algorithm for the deletion of an element in the binary search tree.
 - (c) Explain abstract data type with example.
- 5. (a) Write a program in C for the implementation of bubble sort.
 - (b) Write an algorithm for the addition of two polynomial equations using linked list.
 - (c) Define AVL tree. Explain all the rotations used in AVL tree with example.
- 6. (a) Explain Dijkstra's algorithm with suitable example.

(b) Construct a binary tree for the following preorder and inorder traversals:

Preorder: ABDIEHJCFKLGM

Inorder: DIBHJEAFLKCGM

(c) Explain depth first search algorithm with suitable example.
