No. of Printed Pages: 06

Following Paper ID and Ro	ll No. t	o be	filled	in y	our	Answer	Book.
PAPER 1D : 23171	Roll No.				T		

B. Tech. Examination 2021-22

(Even Semester)

WATER RESOURCE ENGINEERING

Time: Three Hours [Maximum Marks: 60]

Note: Attempt each question.

SECTION-A

1. Attempt all parts of the following: $8 \times 1 = 8$

- Define the term 'Hydrology'. (a)
- Explain humidity and relative humidity. (b)
- A catchment consists of 40% area with run off (c) coefficient 0.3 with the remaining 60% area with run off coefficient 0.50 the equivalent run off coefficient will be.

- (d) For the catchment area of 120 km², the equilibrium discharge in m³/hours of an s-curve obtained by the summation of 6 hour unit hydrograph is
- (e) What do you mean by regime channel?
- (f) The average size of the bed material may be taken as 0.8 mm what is silt factor?
- (g) What do you mean by canal escape?
- (h) Discuss 'mean type river training work'.

SECTION-B

- 2. Attempt any two parts of the following: $2\times6=12$
 - (a) What do you mean by hydrological cycle? Explain its various component with neat sketch.
 - (b) How to calculate run off by using infiltration capacity curve (I.C. curve)?
 - (c) How to design the canal using Garret's diagram. Write down different design step using diagram.

- (d) Write short notes on the following:
 - (i) Crump's open flume outlet
 - (ii) Punjab open flume outlet

SECTION-C

- **Note:** Attempt all questions. Attempt any two parts from each questions. $5\times8=40$
- 3. (a) There are four rain guage stations existing in the catchment of a river, the average annual rainfall values at these stations are 800, 620, 400 and 540 mm respectively. Determine the optimum number of rain gauge in the catchment if E = 10%.
- (b) The following are the rates of rainfall for successive 20 minutes period of a 140 minuts storm: 2-5, 2.5, 10.0, 7.5, 1.25, 1.25,
 5.0 cm/hr take φ_{index} = 3.2 cm/hr. Find out net runoff in cm, the total rainfall and w_{index}.
- (c) Prove that 'the spherical flow is much less efficient then the radial flow'.

- 4. (a) Two identical-tube wells penetrating fully a 12m thick aquifer are located at 180 m apart the tubewell have diameter of 30 cm, R = 300m, and K = 10⁻³ m/sec. Compute:
 - (i) Discharge of tube well when only one is working with a drawdown of 5m.
 - (ii) Percentage decrease in discharge of the tubewell, if both are working with a drawdown of 5m.
 - (b) The IUH of a catchment is triangular in shape with a base of 36 h peak of 20 m³/s occurring at 8 hours from the start derive 2-h unit hydrograph for this catchment.
 - (c) Determine the capacity of the reservoir, if its C.C.A. = 50,000 hest from the following data:

Crop	B in days	D in hect/cymec.	Intensity of Irray as %
Wheat	120	1900	25
Rice	120	1000	10
Sugarcane	330	2500	15

Assume the canal and reservoir losses as 5 and 8 percentage respectively.

5. (a)

(b)

(c)

6.

5. (a) Using Lacey's theory, design an irrigation channel for the following data:

Q = 50 cumecs, f = 1, side slape $\frac{1}{2}$

- (b) Design a trapezoidal shaped concrete lined channel to carry a discharge of 100 cumecs at a slope of 25 cm/km. The side slope of the channel are 1½, N = 0.016. Assume limiting velocity as 1.5 m/sec.
- (c) Given L = 50 m, a = 10 m, b = 10.3 m, k = 1×10⁻⁵ m/sec. if the drains carry 1% of average annual rainfall in 24 hours, find the average annual rainfall.
- 6. (a) Write short notes on the following:
 - (i) Canal fall

y a

art

)m,

e is

the

1 8

pe

- (ii) Head regulator and cross regulater
- (iii) Canal escape
- (iv) Canal outlet
- (b) Design a submerged pipe outlet for the following data:

Discharge through outlet = 0.04 cumeu

F.S.L. of distributing canal = 100 m

F.S.L. of water course = 99.90 m

Full supply depth of distributing canal = 1.1 m

Assume an average value of coefficient of discharge as 0.7.

- (c) Write short notes on the following:
 - (i) Aggrading and degrading type river
 - (ii) Objective of river training work
 - (iii) Groynes or spurs with one figure
 - (iv) Marginal embankment with one neat fig.
 - (v) Bank protection with one neat sketch