S.No.: 458

BCA 2204

No. of Printed Pages: 04

Following	Paper	·ID	and Ro	oll No. 1	o be	e fil	led	iny	/oui	Ar	ISW	er B	lool	(,)
PAPER	ID	: ;	21109	Roll No.						# ¥				

B. C. A. Examination 2021-22

(Even Semester)

MATHEMATICS II

Time: Three Hours]

[Maximum Marks: 60

Note: Attempt all questions.

SECTION-A

1. Attempt all parts of the following:

 $8 \times 1 = 8$

- (a) Find the power set of the set {{a}}.
- (b) Define proper sub-set.
- (c) Define equivalance relation.
- (d) Define null-set.
- (e) Define minimal and maximal element in a poset.
- (f) Define bounded lattices.

- (g) What is cyclic group?
- (h) Define semi group.

SECTION-B

- 2. Attempt any two parts of the following: $2 \times 6 = 12$
 - (a) Let $F: A \rightarrow B$, $g: B \rightarrow C$ if f and g are injective function then show that gof: $A \rightarrow C$ is also injective function.
 - (b) For any two set A and B prove that

$$A - (A \cap B) = A - B$$

- (c) State and prove Demorgan's law.
- (d) Prove that f(x) = 3x + 5, $\forall x \in R$ is a bijective function.

SECTION-C

- **Note:-** Attempt all questions. Attempt any two parts from each questions. $8 \times 5 = 40$
- 3. (a) If A, B and C are non-empty sets, then prove that

$$A \times (B \cap C) = (A \times B) (A \times C)$$

- (b) Show that every relation which is symmetric and transitive must be reflexive.
- (c) Define a lattice.
- 4. (a) Prove that the intersection of two equivalence relation on a set is an equivalence relation on a set.
 - (b) Let $A = \{1, 2, 3, 4\}, B = \{a, b, c, d\}$ $C = \{x, y, z\}$ and let $R = \{(1, a), (2, d), (3, a), (3, b), (3, d)\}, S = \{(b, x), (b, z), (c, y), (d, z)\}$ find ROS.
 - (c) Show that if a relation R is transitive then R⁻¹ is also transitive.
- 5. (a) Find the greatest lower bound and the least upper bound of the set $\{2, 3, 6\}$ if they exist in the boset $(D_{24}, /)$.
 - (b) Show that the relation " \geq " is a partial order on the set of integer Z.
 - (c) Define supremum and infirmum in lattice.

- 6. (a) Prove that G = { 1-1, i, -i} is an abelian group with respect to multiplication when 'i' is cube root of unity.
 - (b) What are the properties which must be satisfied by a set 'G' such that it is a group?
 - (c) Define a ring.
