S.No.: 575

No. of Printed Pages: 06

Following Paper ID and Ro	II No.	to be	filled	in your	Answer	Book.
PAPER ID: 09915	Roll No.					

B. Tech. Examination 2021-22

(Even Semester)

MATHEMATICS - III

Time: Three Hours] [Maximum Marks: 60

Note: - Attempt all questions.

- 1. Attempt any four parts of the following: $5\times4=20$
 - (a) Show that the complex variable function $f(z) = |z|^2$ is differentiable only at origin.
 - (b) Define a harmonic function. Show that the function:

$$u(x, y) = x^4 - 6x^2y^2 + y^4$$

is harmonic.

(c) If | f (z) | is constant, prove that f (z) is also constant.

(d) Find the point where the Cauchy-Riemann equations are satisfied for the function

$$f(z) = x y^2 + i x^2 y$$

(e) Find the value of the integral

$$\int_C (x+y) dx + x^2 y dy \text{ along } y = x^2$$

having (0,0), (3,9) end points.

(f) Use Cauchy's integral formula to calculate:

$$\int_C \frac{2z+1}{z^2+z} dz$$

where C is $|z| = \frac{1}{2}$.

- 2. Attempt any four parts of the following: $5 \times 4 = 20$
 - (a) Find the Taylor series expansion of a function of the complex variable:

$$f(z) = \frac{1}{(z-1)(z-3)}$$
 about the point $z = 4$

(b) Expand:

$$f(z) = \frac{z}{(z-1)(2-z)}$$

in Laurent series valid for |z-1| > 1.

(c) Discuss singularity of:

$$\frac{1}{1-e^2} \text{ at } z=2\pi i$$

(d) Determine the pole and residue at the pole of the function :

$$f(z) = \frac{z}{z-1}$$

(e) Using residue theorem, evaluate the integral:

$$\int_C \frac{1+z}{z(2-z)} dz$$

where C is the circle |z| = 1.

(f) Using complex variable techniques evaluate the integral:

$$\int_0^{2\pi} \frac{1}{5-3\cos\theta} d\theta$$

- 3. Attempt any two parts of the following: $10\times2=20$
 - (a) Calculate the first four moments of the following distribution about the mean and hence find β_1 and β_2 :

x	0	1	2	3	4	5	6	7	8
f	1	8	28	56	70	56	28	8	1

(b) Two lines of regression are given by:

$$5 y - 8 x + 17 = 0$$
 and $2 y - 5 x + 14 = 0$
If $\sigma_y^2 = 16$, find:

- (i) The mean values of x and y
- (ii) σ_x^2
- (iii) The coefficient of correlation between x and y
- (c) (i) Fit the straight line to the following data:

X	0	1	2	3	4
y	1	1.8	3.3	4.5	6.3

- (ii) An urn contains 10 black and 10 white balls. Find the probability of drawing two balls of the same colour.
- 4. Attempt any two parts of the following: $10 \times 2 = 20$
 - (a) The data given below are the number of defectives in 10 samples of 100 items each construct an np-chart and comment on the results:

Sample No.	No. of defectives
1	6
2	16
3	7
4	3
5	8
6	12
7	7
8	11
9	11
10	4

- (b) In a sample of 1000 cases, the mean of a certain test is 14 and standard deviation is 2.5. Assuming the distribution to be normal, find:
 - (i) How many students score between 12 and 15?
 - (ii) How many score above 18?
 - (iii) How many score below 8?

- (c) The number of accidents in a year involving taxi drivers in a city follows Poisson distribution with mean to 3 out of 1000 taxi drivers, find approximately the number of drives with:
 - (i) No accidents
 - (ii) More than 3 accidents in a year
- 5. Attempt any two parts of the following: $10 \times 2 = 20$
 - (a) Find the Fourier transform of:

$$f(x) = \begin{cases} 1 - x^2, & \text{if } |x| \le 1 \\ 0, & \text{if } |x| > 1 \end{cases}$$

and use it to evaluate:

$$\int_0^\infty \left(\frac{x \cos x - \sin x}{x^3} \right) \cos \frac{x}{2} dx$$

(b) Find Fourier cosine transform of:

$$\frac{1}{1+x^2}$$

(c) Solve the difference equation:

$$-6y_{k+2} - y_{k-1} - y_k = 0, y(0) = 0, y(1) = 1$$

by Z-transform.