No. of Printed Pages: 05

Following Paper ID and Ro	ll No. to be filled in your Answer Book.
PAPER ID: 29906	Roll No.

B. Tech. Examination 2021-22

(Even Semester)

DIFFERENTIAL EQUATIONS AND FOURIER ANALYSIS

Time: Three Hours]

[Maximum Marks: 60

Note: - Attempt all questions.

SECTION-A

1. Attempt all parts of the following:

 $8 \times 1 = 8$

(a) Find the order and degree of the differential equation:

$$\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{1/2} + y = x^{1/3}$$

(b) Find the particular integral of the differential equation:

$$\frac{dy^2}{dx^2} + a^2 y = \sin a x$$

(c) Evaluate:

$$\int_{-1}^{1} \left[P_n(x) \right]^2 dx$$

- (d) Express $J_3(x)$ in terms of $J_1(x)$ and $J_2(x)$.
- (e) If f(x) = 1 is expanded in a Fourier sine series in $(0, \pi)$, then find the value of b_n .
- (f) Write Dirichlets conditions for a Fourier series.
- (g) Form the partial differential equation from z = (x + a)(y + b), a and b being constants.
- (h) Classify the equation:

$$\mathbf{u}_{\mathbf{x}\mathbf{x}} + 3 \,\mathbf{u}_{\mathbf{x}\mathbf{y}} + \mathbf{u}_{\mathbf{y}\mathbf{y}} = 0$$

SECTION-B

- 2. Attempt any two parts of the following: $2 \times 6 = 12$
 - (a) Apply method of variation of parameters to find the general solution of:

$$\frac{dy^2}{dx^2} - y = \frac{2}{1 + e^x}$$

(b) Find the power series solution of:

$$(1-x^2)y''-2xy'+2y=0$$

about x = 0.

(c) Find the Fourier series to represent the functionf(x) gien by:

$$f(x) = \begin{bmatrix} -k, & -\pi < x < 0 \\ K, & 0 < x < \pi \end{bmatrix}$$

Hence show that:

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$

(d) Find the temperature in a bar of length 2 whose ends kept at zero and lateral surface insulated if the initial temperature is:

$$\sin\frac{\pi x}{2} + 3\sin\frac{5\pi x}{2}$$

SECTION-C

Note: Attempt all questions. Attempt any two parts from each questions. $5\times8=40$

3. (a) Solve the differential equation:

$$\frac{dy^2}{dx^2} + y = \sin x \sin 2x$$

(b) Solve:

$$x^{2} \frac{dy^{2}}{dx^{2}} - 2(x^{2} + x) \frac{dy}{dx} + (x^{2} + 2x + 2)y = 0$$

by removing the first derivative.

(c) Solve:

$$Dx + Dy + 3x = \sin t$$

$$Dx + y - x = \cos t$$

6. (a) Solve:

(b)

Solve:

(D

solve

4. (a) Prove that:

$$J_{-n}(x) = (-1)^n J_n(x)$$

where n is a positive integer.

(c) Using

(b) Prove that:

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$

(c) Show that:

$$x J_n' = n J_n - x J_{n+1}$$

5. (a) Find the Fourier series representing:

$$f(x) = x$$
, $0 < x < 2 \pi$

(b) Find the Fourier half-range cosine series of the function:

$$f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 2(2-x), & 1 < x < 2 \end{cases}$$

(c) Find the Fourier series expansion for the function:

$$f(x) = x \cos x, -\pi < x < \pi$$

6. (a) Solve:

$$4\frac{\partial^2 z}{\partial x^2} - 4\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = e^{x+2y}$$

(b) Solve:

$$(D+1)(D+D'-1)Z = \sin(x+2y)$$

(c) Using the method of separation of variables, solve:

$$\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$$
